In-class exercise, 2023.05.11

- Write down you and your partner's ID number.
- The grading is as follows: If you did not even try or are doing something else instead of this exercise, then you get 0 automatically and will be marked absent.

Consider independent samples from three normal populations:

$$
X_{1}, \ldots, X_{n} \sim N\left(\mu_{1}, \sigma^{2}\right), Y_{1}, \ldots, Y_{m} \sim N\left(\mu_{2}, \sigma^{2}\right), Z_{1}, \ldots, Z_{l} \sim N\left(\mu_{3}, \sigma^{2}\right)
$$

All four parameters $\left(\mu_{1}, \mu_{2}, \mu_{3}, \sigma^{2}\right)$ are unknown. Your task is to develop a test of the null hypothesis that $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$. Let $\left(\widehat{\mu}, \widehat{\sigma}_{0}^{2}\right)$ be the MLEs for the common population mean and variance under H_{0}. Let $\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\mu}_{3}, \widehat{\sigma}^{2}\right)$ be the MLEs for the each population mean and the common population variance.

1. Describe the sets Θ_{0} and Θ_{1}. Construct the generalized likelihood ratio for testing H_{0}.
2. Show that the generalized likelihood ratio test for testing H_{0} at the $100 \alpha \%$ level leads to a decision rule of the form: Reject H_{0} when

$$
\frac{\widehat{\sigma}_{0}^{2}}{\widehat{\sigma}^{2}} \geq c
$$

where c is some non-random threshold.
3. Show that

$$
\sum_{i=1}^{n}\left(X_{i}-\widehat{\mu}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\widehat{\mu}_{1}\right)^{2}+n\left(\widehat{\mu}_{1}-\widehat{\mu}\right)^{2}
$$

A similar result applies to the Y^{\prime} s and Z^{\prime} s.
4. Show that the decision rule can be rewritten in terms of

$$
\frac{\widehat{\sigma}_{0}^{2}-\widehat{\sigma}^{2}}{\widehat{\sigma}^{2}}=\frac{n\left(\widehat{\mu}_{1}-\widehat{\mu}\right)^{2}+m\left(\widehat{\mu}_{2}-\widehat{\mu}\right)^{2}+l\left(\widehat{\mu}_{3}-\widehat{\mu}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\widehat{\mu}_{1}\right)^{2}+\sum_{i=1}^{m}\left(Y_{i}-\widehat{\mu}_{2}\right)^{2}+\sum_{i=1}^{l}\left(Z_{i}-\widehat{\mu}_{3}\right)^{2}}
$$

5. What is the distribution of

$$
\frac{1}{\sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\widehat{\mu}_{1}\right)^{2}+\sum_{i=1}^{m}\left(Y_{i}-\widehat{\mu}_{2}\right)^{2}+\sum_{i=1}^{l}\left(Z_{i}-\widehat{\mu}_{3}\right)^{2}\right] ?
$$

Explain your finding. Is your finding dependent on whether the null is true or not?
6. Show that

$$
\begin{aligned}
& \frac{1}{\sigma^{2}}\left[n\left(\widehat{\mu}_{1}-\widehat{\mu}\right)^{2}+m\left(\widehat{\mu}_{2}-\widehat{\mu}\right)^{2}+l\left(\widehat{\mu}_{3}-\widehat{\mu}\right)^{2}\right] \\
= & \frac{1}{\sigma^{2}}\left[n\left(\widehat{\mu}_{1}-\mu\right)^{2}+m\left(\widehat{\mu}_{2}-\mu\right)^{2}+l\left(\widehat{\mu}_{3}-\mu\right)^{2}-(n+m+l)(\widehat{\mu}-\mu)^{2}\right]
\end{aligned}
$$

7. Let

$$
W_{1}=\frac{\widehat{\mu}_{1}-\mu}{\sigma / \sqrt{n}}, W_{2}=\frac{\widehat{\mu}_{2}-\mu}{\sigma / \sqrt{m}}, W_{3}=\frac{\widehat{\mu}_{3}-\mu}{\sigma / \sqrt{l}} .
$$

What is the joint distribution of $\left(W_{1}, W_{2}, W_{3}\right)$? Consider an orthogonal transformation of the form

$$
\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{\frac{n}{n+m+l}} & \sqrt{\frac{m}{n+m+l}} & \sqrt{\frac{l}{n+m+l}} \\
? & ? & ? \\
? & ? & ?
\end{array}\right]\left[\begin{array}{c}
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right]
$$

What is V_{1}^{2} ? What would be the distribution of

$$
\frac{1}{\sigma^{2}}\left[n\left(\widehat{\mu}_{1}-\widehat{\mu}\right)^{2}+m\left(\widehat{\mu}_{2}-\widehat{\mu}\right)^{2}+l\left(\widehat{\mu}_{3}-\widehat{\mu}\right)^{2}\right] ?
$$

8. Complete the formulation of the decision rule by constructing an appropriate test statistic which will have a known distribution.
