In-class exercise, 2023.05.09

- Write down your ID number here: \qquad
- Write down your partner's ID number here: \qquad
- The grading is as follows: If you did not even try or are doing something else instead of this exercise, then you get 0 automatically and will be marked absent.

Let Y_{1}, Y_{2} be IID $N\left(\mu, \sigma^{2}\right)$.

1. Write down the joint density of Y_{1}, Y_{2}. After finding the joint density, verify that the resulting density is a specific case of LM Definition 11.5.1.
2. We will change variables from Y_{1}, Y_{2} to V_{1}, V_{2} where $V_{1}=\frac{1}{\sqrt{2}} Y_{1}+\frac{1}{\sqrt{2}} Y_{2}$ and $V_{2}=\frac{1}{\sqrt{2}} Y_{1}-\frac{1}{\sqrt{2}} Y_{2}$.
(a) Solve for Y_{1}, Y_{2} in terms of V_{1}, V_{2}.
(b) Substitute the result in (a) into your joint density in Item 1. Do some algebra and try to obtain a simplified form similar to LM Definition 11.5.1.
(c) Is your simplified form in (b) a joint density? If it is, what is the distribution of V_{1}, V_{2} ? If it is not, what should you do so that it would become a joint density?
